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Abstract

Knowledge-graph-aware recommendation systems have in-
creasingly attracted attention in both industry and academic
recently. Many existing knowledge-aware recommendation
methods have achieved better performance, which usually
perform recommendation by reasoning on the paths between
users and items in knowledge graphs. However, they ignore
the users’ personal clicked history sequences that can bet-
ter reflect users’ preferences within a period of time for rec-
ommendation. In this paper, we propose a knowledge-aware
attentional reasoning network KARN that incorporates the
users’ clicked history sequences and path connectivity be-
tween users and items for recommendation. The proposed
KARN not only develops an attention-based RNN to cap-
ture the user’s history interests from the user’s clicked history
sequences, but also a hierarchical attentional neural network
to reason on paths between users and items for inferring the
potential user intents on items. Based on both user’s history
interest and potential intent, KARN can predict the clicking
probability of the user with respective to a candidate item.
We conduct experiment on Amazon review dataset, and the
experimental results demonstrate the superiority and effec-
tiveness of our proposed KARN model.

Introduction
Recently knowledge graphs (KGs) have made significant
contributions on many fields, such as recommendation sys-
tem (Zhang et al. 2018), question answering system (He et
al. 2014) and information extraction (Cao et al. 2018), etc.
KGs are directed heterogeneous graphs that represent nodes
as entities and edges as relations. Numerous structured data
are stored in KGs, where (h, r, t) denotes the relation r links
the head entity h and tail entity t. Focusing on recommen-
dation field, the user-item knowledge graphs provide the
rich knowledge of users, items, and the relationships among
them. For instance, the facts of the user-item interaction
are organized in the form of triplets like (James Cameron,
IsDirectorOf, Aliens), which represents James Cameron is
the director of the movie Aliens.
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Figure 1: An example of knowledge-graph-aware recom-
mendation in movie domain. The user’s history click se-
quences are incorporated for more precise recommendation.

A large number of efforts have been done for making per-
sonalized recommendation, which roughly can be catego-
rized collaborative filtering (CF) based methods (Das et al.
2007; Xue et al. 2017), content based methods (IJntema et al.
2010; Zhang, Liu, and Gulla 2018) and hybrid methods (Li
et al. 2011). These works analyze and process various con-
tent data such as users’ profile, ratings, reviews, and items’s
attributes for personalized recommendation. Factually, nu-
merous of structural information implied in these data can
be used for modeling recommendation mechanism. In re-
cent years, incorporating knowledge graphs into recommen-
dation becomes very popular. The heterogeneous multi-type
user behaviors and the item knowledge can be integrated into
an unified graph structure, which has shown great potential
in boosting the explainability of recommendation systems.

Among the knowledge-aware recommendation meth-
ods, the embedding-based (Wang et al. 2018b) and path-
based (Wang et al. 2019) recommendation have success-
fully achieved promising recommendation performance.
Importantly, the path fashion methods can better pro-
vide the ability of explainability for recommendation by
searching the connectivity information of users and items
in KGs. Giving an example of movie recommendation
in Figure 1. From the path (Jark, Interact, Titantic) ⇒



(Titantic, DirectedBy, James Cameron)⇒ (James Cameron,
IsDirectorOf, Piranha 2:The Spawing), we can reason that
the user Jark may interact the movie Piranha 2:The Spawing
due to it has the same director James Cameron with Titantic
he has watched before. The prior path-based methods (Zhao
et al. 2017; Wang et al. 2019) only take advantages of path
connectivity information between users and items, and ig-
nore the importance of the user’s clicked history sequences
on reflecting user’s preferences. As Figure 1 shown, without
considering the users’ clicked sequences, the movie Aliens
may be also recommended to user Jark along the reason-
ing path (Jark, Interact, Titantic) ⇒ (Titantic, DirectedBy,
James Cameron)⇒ (James Cameron, IsDirectorOf, Aliens).
If we consider the user’s clicked history sequence Titantic→
Avengers:Endgame → Ant-Man and the Wasp that reveals
the user Jark prefers adventurous movies in recent times, the
movie Aliens should be the more appropriate recommenda-
tion item than Piranha 2: The Spawing for user Jark.

In this paper, we propose a knowledge-aware attentional
reasoning network denoted as KARN, which fuses the user’s
clicked history sequence and path connectivity between
users and items in KGs for recommendation. KARN is a
deep learning model for click-through rate (CTR) predic-
tion, which takes one user’s click history sequence and path
connectivity between an user-item pair in KGs as input, and
outputs the probability of the user clicking the candidate
item. Specifically, for each item entity in user-item KGs,
KARN first extracts item representation from the textual
knowledge (i.e., its title) and contextual knowledge (i.e., its
one-hop neighbors in KGs). Then KARN devises two key
components with the goal of fully exploiting users’ click his-
tory sequence and path connectivity between users and items
in KGs. The first component, namely SRA, that is the stack
of the recurrent neural network and an attention network,
aims to capture user’s history interest representation from
the user’s clicked history sequence. The second component
A-SRA first uses SRA component to obtain the single-path
feature of each path between an user-item pair, and then em-
ploys the attention network to generate the potential user in-
tent representation by aggregating multiple single-path fea-
tures with different weights. Based on the representations of
user’s history interest and potential intent, KARN calculates
a probability to determine whether the user clicking the can-
didate item.

In summary, the contributions of this paper are as follows.
• We propose a knowledge-aware attentional reasoning net-

work KARN that fuses the users’ clicked history sequence
and path connectivity in KGs for recommendation.

• We extract the item representation by incorporating the
textual knowledge and contextual knowledge of items
based on the user-item knowledge graph.

• We present two components to respectively obtain the fea-
tures of user’s history interest and potential intent from the
user’s clicked sequence and path connectivity in KGs.

• We empirically perform extensive experiments on Ama-
zon review data set. The experimental results demonstrate
our model KARN significantly achieves state-of-the-art
recommendation performance.

Problem Formulation
This paper focuses on product recommendation, which usu-
ally provides two groups of correlation information for rec-
ommendation, i.e., the user-item interaction and item-item
correlation. The user-item interaction represents the interac-
tion behaviors between users and items, such as clicking,
watching, purchasing, etc. The item-item correlation indi-
cates the two items have the explicit relationships, such as
bought together by the same user, belong to the same cate-
gory, etc.

For the user-item knowledge graph construction, follow-
ing (Catherine and Cohen 2016), we simply convert the
user-item interaction and item-item correlation into follow-
ing groups of triplet facts: (1) (u, Purchase, v) represents
that the purchase interaction between the user u and the
item v. (2) (u,Review, v) represents that the user u gives
the feedback reviews on the item v. (3) (v,BelongsTo, c)
represents that the item v belongs to the category c. (4)
(v, ProducedBy, b) represents that the item v is produced
by the brand b. (5) (v1, AlsoBought, v2) represents that
items v1 and v2 have been purchased by the same user.
(6) (v1, AlsoV iewed, v2) represents that the second item v2

was viewed before or after the purchase of the first item v1.
(7) (v1, BoughtTogether, v2) represents that the items v1

and v2 have been purchased together in a single transaction.
(8) (v1, BuyAfterV iewing, v2) represents that the item v2

has been purchased after viewing the reviews of item v1.
Task Definition. The goal of our work is to find the items

that have the possible Purchase relationship with users.
We can formulate the task as follows: given an user u, a
candidate item v, the user’s history clicked item sequence
S(u) = {v1, v2, ..., vt} and the set of paths P (u, v) =
{p1, p2, ..., pn} between user u and item v, the holistic
goal is to estimate the Purchase interaction probability be-
tween user u and item v by ỹ = g(u, v|S(u), P (u, v)),
where g is our recommendation system. ỹ can also be ex-
plained that it aims to measure the plausibility of the triplet
(u, Purchase, v) based on the user’s clicked sequence and
the path connectivity.

The Proposed Model
Framework
We illustrate the framework of KARN in Figure 2. As shown
in this figure, KARN takes the user’s clicked history se-
quences and path connectivity information between the user-
item pairs as input, and outputs a probability of the user
clicking the candidate item. It mainly consists of three steps:
1) Item representation extraction, 2) User’s history interest
extraction and user’s potential intent extraction and 3) Rec-
ommended probability calculation. To be specific, in the first
step, KARN extracts an item entity representation from the
textual knowledge and contextual knowledge in the user-
item KG. In the second step, KARN devises two key com-
ponents SRA and A-SRA to extract the features of the user’s
history interest and potential intent, respectively. Finally,
based on the fusion of the representations of user’s history
interest and potential intent, KARN calculates a probability
to predict whether the user will click the candidate item.
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Figure 2: Simple visualization of KARN model.

Item Entity Representation
Entities in the user-item knowledge graph usually include
the user-entities, item-entities and attribution-entities (e.g.,
the category and brands of items). For an item entity such
as book or movie in the KG, we extract item representation
from the textual knowledge and contextual knowledge. Here
we consider the title of the item as the textual knowledge
due to the title usually gives the main topics of this item
entity, and the immediate neighbors of items in the KG as the
contextual knowledge since contextual entities are usually
provide more complementary information in improving the
identifiability of the item entity.

We denote the item entity as v, its textual knowledge
as T = {w1, w2, ...} and contextual knowledge as C =
{e1, e2, ...}. Accordingly, their embeddings are denoted as
v ∈ Rd, T = [w1,w2, ...],wi ∈ Rd′ and C =
[e1, e2, ...], ei ∈ Rd, where d and d′ are respectively the di-
mensions of embeddings of entities and words. For the tex-
tual knowledge of items, we use a convolution neural net-
work composed of a convolutional layer and a local max-
pooling layer to learn the textual representation of items. In
the convolutional layer, we adopt the filter ci(i ∈ [1, ...,F ])
to the input embedding T and produce the feature maps
mi = ReLu(ci ⊗ T + bi), where F is the number of fil-
ters, ⊗ is the convolution operation and bi is the bias term.
In pooling layer, we use a local max-pooling operation on
each feature map mi, and identify the most significant local
features as pi. Then the concatenation of these local features
is taken as the textual representation of item v as

v′ = g1([p1,p2, ...,pF ])

where g1 is the transformation function that can be linear
or non-linear and v′ ∈ Rd. For the contextual knowledge
of items, the contextual representation is calculated as the

average of its contextual entities, i.e.,

v̄ =

∑
ei∈C(v) ei

|C(v)|

Based on the textual knowledge and contextual knowl-
edge of items, we denote the item representation as

I = g2([v,v′, v̄])

where I ∈ Rd and g2 is the linear or non-linear transforma-
tion function.

User’s History Interest Extraction
With the goal of obtaining the user’s history interest, SRA
component is designed as the stack of the recurrent neural
network and an attention network, which takes the user’s
clicked item sequence as input and outputs the user’s history
interest representation.

Based on the item entity representation extraction, we
can get the representations of the input item sequence
{v1, v2, ..., vt} as {I1, I2, ..., It}. In j-step of LSTM, both
the j-th item embedding Ij and the output of j − 1-step of
LSTM are taken as inputs, and an intermediate representa-
tion hj ∈ Rm is outputted, which is given by:

hj = LSTM(hj−1, Ij)

where m is the dimension of the hidden states of LSTM.
Usually the last hidden state ht is regarded as the sequential
features of the input sequence in prior works (Xiong, Hoang,
and Wang 2017; Wang et al. 2019). Besides, we consider
that the previous hidden states may make different contribu-
tions to generate the holistic sequential representation. Thus
we take the hidden states H = [h1,h2, ...ht] ∈ Rm×t of



LSTM as input, and adopt following attention mechanism to
generate the user’s history interest representation s as

A = softmax(W1σ(W2H))

a = fa(AHT )

s = [a;ht]

where σ is the activation function, such as sigmoid, ReLu or
tanh. W1 ∈ Rs2×s1 and W2 ∈ Rs1×m are weight matrices.
s2 is designed for measuring how many different aspects of
the input item sequence need to be focused on. Each row
vector of the matrix A ∈ Rs2×t represents a weight distri-
bution that weights the different contributions of the input
items. fa is the operator that calculates the average of the
row vectors in matrix AHT .

User’s Potential Intent Extraction
Aiming to get the potential user’s intent from the path set
between an user-item pair, A-SRA component is devised in
two steps: 1) Extracting the single-path feature of each path
in the path set, (2) Obtaining the user’s potential intent rep-
resentation by integrating the multiple single-path features
with different weights.

In the first step, given a path pj = {e1, r1, e2, r2, ..., eq}
with j = [1, .., n], we concatenate the embeddings of the
current entity ei, its entity-type e′i and relation ri as the in-
put vector xi = [ei; e

′
i; ri] of the cell of LSTM. Here we

use the item representations for item entities, and define a
null relation rq for the last entity eq to pad it on the end of
the path. As such, the input path embedding is denoted as
{x1,x2, ...,xq}, which not only contains the sequential in-
formation of the path, but also the compositional semantics
information of the entity and its relation to the next entity.

Having established the input representation of the path pj
as {x1,x2, ...,xq}, we employ other SRA network to ex-
plore the sequential information of the path, and generate
the single-path representation for encoding its holistic se-
mantics as sj . For the path set P (u, v) = {p1, p2, ..., pn}
between the user u and the item v, we can get its feature
representations as {s1, s2, ..., sn}. As prior works (McCal-
lum et al. 2017) studied, different paths have different im-
pacts to model the potential user intent, thus we utilize other
attention mechanism used in SRA component to produce
the user’s potential intent representation s̄, which is the ag-
gregation of the multiple single-path feature representations
{s1, s2, ..., sn} with different weights.

Probability
Based on the user’s history interest representation s and
the potential user’s intent representation s̄, we feed them
into a project layer for obtaining the user representation as
u = sigmoid(U1[s; s̄] + b1). Finally, given the user repre-
sentation u and item representation I of the item entity v, we
calculate the probability of the user u clicking the item v as

ỹ = sigmoid(UT
2 [u; I] + b)

where U1 ∈ Rd×4m, b1 ∈ Rd, U2 ∈ R2d and b are the
parameters of the projection layers.

Training
We use the observed facts of the user-item interactions as
positive samples and unobserved facts as negative samples
for training our model. A training sample is denoted as X =
{(u, v), S(u), P (u, v), y}, where S(u) = {v1, v2, ..., vt}
is the users’ history clicked item sequence, P (u, v) =
{p1, p2, ..., pn} is the set of paths between user u and item
v, and y is the label that equals to 1 if X is the positive sam-
ple, otherwise 0. After our model, each input sample has
the respective estimated probabilities ỹ ∈ [0, 1] of user u
clicking item v. Thus we minimize the following negative
log-likelihood function to train our model:

L = −

{ ∑
X∈∆+

y log(ỹ) +
∑

X′∈∆−

(1− y) log(1− ỹ)

}

where X and X ′ are respectively the positive and negative
samples from the positive and negative set ∆+ and ∆−.

Construct Negative Samples. We construct a negative
training sample from three aspects based on a positive sam-
ple X = {(u, v), S(u), P (u, v), 1}: (1) For the user-item
pair (u, v), we randomly select the item v′ that the user has
not clicked to construct the negative user-item pair (u, v′),
(2) For the user’s clicked sequence S(u) = {v1, v2, ..., vt},
we randomly replace o1 items in S(u) with items that the
user has not clicked, where o1 = d(1 − ε)te, d·e is the ceil-
ing function and ε ∈ [0, 1), (3) For the path information
P (u, v) = {p1, p2, ..., pn}, we respectively construct a neg-
ative path for each path in P (u, v). Similar to the construc-
tion of the negative users’ clicked sequence, we also use
o2 = d(1 − ε)qe entity-relation pairs {(e′i, r′i)|i ∈ [1, o2]}
selected from user-item KGs to randomly replace entity-
relation pairs in the path pj . Thus the negative training sam-
ple can be organized as X ′ = {(u, v′), S′(u), P ′(u, v), 0}.

Experiment
In this section, we evaluate our model KARN on Amazon1

dataset. We first introduce the datasets and baselines, then
present the corresponding experimental results and analysis.

Experimental Setup
DataSet Amazon review dataset (McAuley et al. 2015;
He and McAuley 2016) is an user-item interaction dataset
that involves products in 24 categories, such as Books,
Movies & TV and Music, etc. Each category contains three
types of data, including user’s rating data, user’s review data
and product’s meta-data (prices, brands). In this experiment,
we use the 5-core2 data of Books, Music, Movies &TV and
Clothing as our datasets. Here we process these datasets in
three steps: (1) We discard the users whose clicked items
are fewer than 5 and sort the remain user’s clicked items by
time-stamp for getting the users’ clicked sequences. (2) We
use these three types of data to construct user-item knowl-
edge graph according to the section ’Problem Formulation’.
(3) We generate the paths between the user-item pairs from

1http://jmcauley.ucsd.edu/data/amazon/
2Each user or item has at least 5 associated reviews



Table 1: Statistics of the Datasets
DataSets Book Music Movies &TV Clothing

User-Item
Interactions

#Users 8,026,324 478,235 2,088,620 3,117,268
#Items 3,979,373 599,080 498,117 3,040,742
#Interactions 31,405,196 900,712 6,304,580 6,027,597
#Brands 67 346 2,814 8,495
#Categories 3,986 478 801 2,802

Knowledge
Graphs

#Entities 12,009,594 1,078,139 2,590,343 6,160,385
#Triplets 95,430,838 8,652,526 12,956,338 81,140,545

Path
#Paths 34,769,400 662,321 6,878,390 4,149,625
Avg Length 4.72 5.01 4.86 5.05

the user-item knowledge graph by vanilla BFS in two di-
rections used in (Xiong, Hoang, and Wang 2017). For each
category data, we randomly sampled 80%, 10% and 10% of
the samples as the training, valid and test data .

Parameter Setting In training stage, we set the number of
filters as F = 5, the maximum length of a path and clicked
sequence as q = 8 and t = 10, the maximum number of
the path set as n = 6. We also apply a grid search to find
out the best settings of hyper-parameters, i.e., we select the
dimensions of entity embeddings d, word embeddings d′ and
hidden states m from {50, 100, 200, 250, 300}, the aspects
of self-attention s2 from {1, 3, 5, 7, 9}, the batch size B
from {500, 1000, 1500, 2000}, and the learning rate η from
{0.1, 0.01, 0.001, 0.0001}. We train our model 1000 epochs
and the best optimal parameter configurations are d = d′ =
m = 100, s2 = 5, B = 1000, η = 0.001. To compare with
baselines, we use Hit@K and ndcg@K with K = { 1,2,....,
10 } as the evaluation metrics.

Baselines
We use the following state-of-the-art recommendation meth-
ods as baselines in our experiments.
• BPR (Rendle et al. 2009) is the bayesian ranking model

that uses Matrix Factorization (MF) as the prediction
component for recommendation. It utilizes the user-item
interaction to learn representations of users and items.

• NFM (He and Chua 2017) combines the linearity of Fac-
torization Machines (FM) and the non-linearity of neu-
ral network for performing item recommendation. It treats
historical items as the features of users.

• CKE (Zhang et al. 2016) employs MF and TransR (Lin
et al. 2015) to integrate text, images, and structure infor-
mation of knowledge graph for recommendation. It is the
KG-enhanced method that utilizes KG to guide the repre-
sentation learning of items.

• FMG (Zhao et al. 2017) is a meta-path based model that
employs FM to assemble user or item vectors factorized
by meta-path similarity matrices using MF for rating rec-
ommendation.

• DAN (Zhu et al. 2019) is a deep attention neural network
that extracts user features from the user’s history clicked
sequence for performing recommendation.

• KPRN (Wang et al. 2019) is a KG-aware path recurrent
network that reasons on paths to infer the underlying ra-
tionale of an user-item interaction.

Results and Analysis
In this experiment, we compare our model with several state-
of-the-art baselines on top-K recommendation. For the com-
pared baselines, we rerun them using our datasets. Further
we give the convinced experimental results in Figure 3.

From Figure 3, we can observe that our model KARN
significantly outperforms all baselines on four datasets with
all metrics. Specifically, KARN achieves at least 2.5% on
Hits@K and 1.8% on ndcg@K higher performance than
other models. The three advantages of KARN make its supe-
riority of recommendation performance: (1) We incorporate
the user’s history clicked sequence and path connectivity
between the user-item pairs for personalized recommenda-
tion. (2) We develop an attentional recurrent neural network
SRA to learn the holistic sequential representations of the
input sequences. (3) We employ attention mechanism in A-
SRA component to learn the comprehensive path represen-
tation, which is integrated from the different paths between
the user-item pairs with a combination of different weights.

More detailed analysis is as follows: (1) Among all base-
lines, the meta-path method FMG that heavily relies on the
predefined meta-paths, has the poor performance on four
datasets. It is mainly because that the meta-path patterns
may fail to fully explore the user-item connectivity when in-
troducing remote entities. (2) The models with rich auxiliary
information (DAN, CKE and NFM) perform better in gen-
eral than the shallow methods (BPR), which suggests that
the introduced KG and user’s history clicked items are ca-
pable of learning user-item interaction information for rec-
ommendation effectively. (3) For the neural network based
models DAN and NFM, DAN has the better performance
in our experiments. The reason is that the attention mech-
anism used in DAN can better capture the sequential fea-
tures of the user’s clicked sequences than NFM. (4) Expect
for our model, KPRN substantially achieves higher perfor-
mance than FMG amomg the path-based models. It indicates
that KPRN can well explore the user-item connectivity by
reasoning on paths to infer the user preferences.

Discussion on Different KARN Variants
To investigate the efficacy of the design of our model, we
explore the variants of our model with respective to follow-
ing aspects: (1) the usage of user’s clicked history sequence,
(2) the usage of path connectivity in user-item knowledge
graph, (3) the usage of textual knowledge, (4) the usage of
contextual knowledge, and (5) the usage of attention mech-
anism. For convenience, we denote KARN-s and KARN-p
as the variants that respectively does not consider the user’s
clicked history sequence and path connectivity informa-
tion for recommendation. Moreover, KARN-t and KARN-c
are the variants that either textual knowledge or contextual
knowledge is not used for extracting item representations,
and the variant KARN-a is to exclude the attention mecha-
nism from our model KARN.

The experimental results of these variants are reported
on Table 2. From this table, we can observe that: (1) Both
KARN-s and KARN-p obtain lower recommendation per-
formance than KARN. It proves that the user’s clicked his-
tory sequence and path connectivity between user-item pairs
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Figure 3: Recommendation Performance of KARN on Hit@K and ndcg@K

in KGs are important factors to infer the user’s preferences
towards target items. That is, both factors make significant
contributions on improving the personalized recommenda-
tion performance. (2) There is the gap recommendation per-
formance between KARN and KARN-t (KARN-c), which
indicates that KARN successfully alleviates textual knowl-
edge and contextual knowledge to learn item representa-
tions. It is because that such two aspects of knowledge can
provide the indispensable semantic characteristics of items.
(3) KARN has the higher performance than KARN-a on all
datasets with all metrics. The main reason is that the atten-
tion mechanism in KARN can dynamically learn the holis-
tic sequence representations of the input sequences, in forms
of either the user’s clicked history sequence or the path se-
quence, with assigning different weights to different items.

Effect of Different Multi-Aspects s2
The above experiments show that the usage of attention
mechanism in our model is beneficial for improving rec-
ommendation performance. The attention mechanism is a
multi-head attention, where the parameter s2 measures how
many different aspects of the input sequences need to be
concerned on. This subsection mainly evaluates how the per-
formance of our model KARN changes with different pa-
rameter s2. In this experiment, we select s2 from {1, 2, ...,
10} and use the optimal configurations for the rest param-
eters. Figure 4 gives the convinced results on Hit@10 and
ndcg@10, which demonstrates that: (1) Our model KARN
achieves highest performance when s2 = 5 on both Hit@10
and ndcg@10. It suggests that s2 = 5 can best capture the
holistic semantic features from the multiple aspects of the
input sequences. (2) As a whole, the accuracy of our model

first increases and then decreases with s2 increasing. That
is, too small s2 can hardly explore the integration related-
ness of multiple aspects of the inputs, and too large s2 may
bring much more noises than useful signals.

Related Works
With the explosive growth of information, it is increas-
ingly important to make personalized recommendation for
satisfying user’s preferences. A variety of previous works,
such as CF-based methods (Das et al. 2007; Xue et al.
2017), Content based methods (IJntema et al. 2010; Zhu
et al. 2019) and hybrid based methods (Li et al. 2011;
Morales, Gionis, and Lucchese 2012), have been done for
trying to tackle personalized recommendation. These meth-
ods usually use various unstructured information, such as
textual reviews, visual images, and various implicit or ex-
plicit feedbacks for making personalized recommendation,
which have weakness in the explainable recommendation.

Recently, many works that attempt to use knowledge
base embedding for explainable recommendation, have been
done. Such knowledge-aware efforts can be roughly cat-
egorized into embedding-based and path-based methods.
Embedding-based methods (Wang, Wang, and Yeung 2015;
He, Kang, and McAuley 2017; Huang et al. 2018; Wang et
al. 2018b; Zhang et al. 2016; Dong, Chawla, and Swami
2017; Velickovic et al. 2018) usually leverage knowledge
graph embedding techniques (Bordes et al. 2013; Lin et al.
2015; Zhou et al. 2017) to guide the representation learning
of items and users. For example, CKE (Zhang et al. 2016)
utilizes embedding model TransR (Lin et al. 2015) to em-
bed items into a ’transition space’, where users are mod-
eled as translation vectors operating on items. Such meth-



Table 2: Performance of Different Variants of KARN on Hit@K and ndcg@K with K = {1, 5, 10}

Variants Book Music Movies &TV Clothing
Hit@1 5 10 Hit@1 5 10 Hit@1 5 10 Hit@1 5 10

KARN-s 49.6 75.4 78.8 48.9 71.7 74.7 46.3 65.7 68.6 47.6 67.6 72.3
KARN-p 49.3 75.2 77.3 48.4 71.4 74.5 46.6 65.2 68.1 47.0 68.1 72.0
KARN-t 50.0 76.1 79.5 49.3 72.3 75.1 47.0 65.0 69.3 47.9 66.6 72.4
KARN-c 50.2 75.6 79.8 49.2 72.0 74.8 47.4 64.8 69.0 47.4 67.2 72.9
KARN-a 49.0 74.3 78.2 48.1 70.9 74.0 46.8 65.2 68.7 47.3 67.8 72.7
KARN 51.2 76.9 80.6 50.7 73.0 76.0 48.6 67.1 70.8 49.1 69.5 73.6

Variants ndcg@1 5 10 ndcg@1 5 10 ndcg@1 5 10 ndcg@1 5 10
KARN-s 49.6 59.1 61.8 48.9 57.1 59.4 46.3 57.1 58.9 47.6 57.1 58.6
KARN-p 49.3 58.5 60.9 48.4 56.6 58.8 46.6 56.3 58.0 47.0 56.5 58.0
KARN-t 50.0 59.8 63.1 49.3 57.8 60.2 47.0 58.1 59.5 47.9 57.6 59.2
KARN-c 50.2 59.4 62.6 49.2 57.4 59.5 47.4 57.4 59.7 47.4 57.4 58.9
KARN-a 49.0 59.0 62.0 48.1 56.8 58.7 46.8 56.5 59.0 47.3 56.8 57.7
KARN 51.2 60.6 63.6 50.7 58.5 61.0 48.6 58.8 60.8 49.1 58.3 60.0
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Figure 4: The Performance of KARN on Different Parameter s2.

ods explore one-step connectivity between users and items
in KGs as the guidance of representation learning. However,
this regularization of knowledge graph embedding has not
fully exploit the connectivity characterization between users
and items, since it lacks the reasoning ability to explain why
an item is recommended for an user.

For addressing above issues, path-based methods (Wang
et al. 2018a; Zhao et al. 2017; Heitmann and Hayes 2010;
Sun and Han 2012; Hu et al. 2018; Sun et al. 2018; Wang
et al. 2019) introduce the path connectivity information in
KGs to perform the recommendation leaning. FMG (Zhao et
al. 2017) predefines meta-path patterns to capture the user-
item affinities carried in KGs for learning the representa-
tions of the users and items, where meta-paths are a series
of sequences of entity type generated from amount prior do-
main knowledge. These meta-path-aware models have lim-
ited ability of generalization on the unseen interactions be-
cause they heavily rely on the quality of meta-paths. Re-
cently, many studies attempt to learn the representations of
the paths between users and items for inferring users’ pref-
erences. For instance, RKGE (Sun et al. 2018) and MCRec
(Hu et al. 2018) respectively employ RNN and CNN over the
input embeddings of entities along a path to get the feature
representation of the path between user-item pairs for rec-
ommendation. KPRN (Wang et al. 2019) considers relations,
entity and entity-type together along paths, and learns path
representations using an attentional RNN to integrate multi-
ple paths between an user-item pair with different weights.

KPRN is the current state-of-the-art path-based recommen-
dation model. However, such works only explore path in-
formation in KGs, but ignore user’s history clicked sequen-
tial behaviors for personalized recommendation. The user’s
history clicked sequential behaviors is a better reflection of
the user’s recent interests. Towards this end, we propose a
knowledge-aware attentional reasoning network that incor-
porates the user’s clicked history sequence and path connec-
tivity information in KGs for more precise recommendation.

Conclusion

In this paper, we propose a knowledge-aware attentional rea-
soning network KARN for personalized recommendation,
which considers not only the user’s history clicked sequence
but also the path connectivity between users and items in
KGs. For the user’s history clicked sequence, KARN devel-
ops the SRA component composed of the recurrent neural
network and attention network to extract the user’s history
interest. For the path information in KGs, KARN devises the
A-SRA component that is a hierarchical attention network
to capture the potential user’s intent. By leveraging the fu-
sion of the user’s history interest and potential intent, KARN
gives the clicking probability of whether the user clicks the
candidate item. We empirically conduct evaluation experi-
ments on Amazon data. The experimental results demon-
strate that our model KARN has achieved state-of-the-art
recommendation performance.
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