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ABSTRACT

In knowledge graph embedding models, the margin-based
ranking loss as the common loss function is usually used to en-
courage discrimination between golden triplets and incorrect
triplets, which has proved effective in many translation-based
models for knowledge graph embedding. However, we find
that the loss function cannot ensure the fact that the scoring
of correct triplets must be low enough to fulfill the transla-
tion. In this paper, we present a limit-based scoring loss to
provide lower scoring of a golden triplet, and then to extend
two basic translation models TransE and TransH, separately
to TransE-RS and TransH-RS by combining limit-based scor-
ing loss with margin-based ranking loss. Both the presented
models have low complexities of parameters benefiting for
application on large scale graphs. In experiments, we evaluate
our models on two typical tasks including triplet classification
and link prediction, and also analyze the scoring distributions
of positive and negative triplets by different models. Experi-
mental results show that the introduced limit-based scoring
loss is effective to improve the capacities of knowledge graph
embedding.
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1 INTRODUCTION

Knowledge graph as an effective way to represent knowl-
edge has made a contribution to artificial intelligence and
knowledge management [17, 22, 25, 32]. For example, vari-
ous available large-scale knowledge graphs such as Word-
Net [21], Freebase [2], GeneOntology [1], NELL [8] and
Yago [23] have become very important resources to sup-
port intelligence application and knowledge managemen-
t [3, 9, 13, 19, 20, 26, 27, 30, 31, 36, 37].

Knowledge graphs are multi-relational directed graphs
composed of entities as nodes and relations as edges, in
which a triplet (head, relation, tail) denoted as (ℎ, 𝑟, 𝑡) rep-
resents a relationship r from head h to tail t. The aim of a
knowledge graph completion is to predict relations and de-
termine specific-relation type between entities. To fulfill the
aim, many of the current methods under supervision of the
existing triplets to learn knowledge embeddings show strong
feasibility and robustness [4–7, 11, 12, 15, 16, 18, 24, 31, 33–
35], such as Structured Embedding [4], Semantic Matching
Energy Model [5, 6], Neural Tensor Network Model [28],
TransE [7] and TransH [33] etc.

Among these methods, translation based models are promis-
ing to encode entities as low dimensional embeddings and
relationships between entities as translation vectors. Usually
a relation-dependent translation scoring function, such as
𝑓𝑟(ℎ, 𝑡) = ‖h+r−t‖, is defined to measure the correctness of a
triplet (ℎ, 𝑟, 𝑡) in the embedding space. h+r ≈ t when (ℎ, 𝑟, 𝑡)
holds, while h′ + r should be far away from t′ for a corrupted
triplet (ℎ′, 𝑟, 𝑡′). To learn such translation relation between
entities, a margin-based ranking loss between the scores of
correct and incorrect triplets 𝑚𝑎𝑥(0, 𝛾 + 𝑓𝑟(ℎ, 𝑡)− 𝑓𝑟(ℎ

′, 𝑡′))
is used in current translation based models, and has proven
effective on knowledge graph embedding [7, 15, 16, 18, 33]. By
the margin-based ranking loss, the score of a positive triplet
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(ℎ, 𝑟, 𝑡) is lower at least by 𝛾 than that of corresponding neg-
ative triplet, meanwhile a low score of correct triplet should
be expected. However, we notice that, with the margin-based
ranking loss it is also possible that the score of correct triplet
is not small enough to hold (ℎ, 𝑟, 𝑡), and even that h + r
maybe far away from t. For example as given in subsection
3.1, when 𝛾 − (𝑓𝑟(ℎ

′, 𝑡′) − 𝑓𝑟(ℎ, 𝑡)) is very low, but 𝑓𝑟(ℎ, 𝑡)
and 𝑓𝑟(ℎ

′, 𝑡′) can be both much higher, which leads to the
expectation h+ r ≈ t for golden triplet (ℎ, 𝑟, 𝑡) cannot be re-
alized. That is, the margin-based ranking loss favors a margin
𝛾 between the two scores 𝑓𝑟(ℎ, 𝑡) and 𝑓𝑟(ℎ

′, 𝑡′), but cannot
ensure the score 𝑓𝑟(ℎ, 𝑡) within an expected value domain.
Using such loss the learned knowledge embeddings may lose
the translation rule for correct fact (ℎ, 𝑟, 𝑡). Common knowl-
edge graph embedding methods mostly focus on improving
the definition of score function, and ignore the issue of the
margin-based ranking loss function to learn a suitable score
of positive triplets.

In order to enhance the expectation of low scoring for
positive triplets, this paper presents an upper limit score of
positive triplets by a limit-based scoring loss, and adds the
limit-based scoring loss item into common loss function as
new loss evaluation for optimizations. In this way, two basic
translation-based models, TransE [7] and TransH [33] are ex-
tended to TransE-RS and TransH-RS. The proposed TransE-
RS and TransH-RS combine margin-based ranking loss and
limit-based scoring loss, meanwhile separately share the same
translation rules as TransE and TransH. The effectiveness
of our proposed models are verified by our experiments in
section 4.

Our contributions. (1) A limit-based scoring loss item
is combined with margin-based ranking loss for translation-
based models on learning knowledge embeddings. (2) This
paper extends two simple and effective translation-based
models TransE and TransH to TransE-RS and TransH-RS,
which provides a reference for other translation-based models
and other knowledge graph embedding models.

In the remainder of this paper, the related works on knowl-
edge graph embedding are introduced in Section 2. We pro-
pose to improve translation-based models by introducing a
limit-based scoring loss, and present TransE-RS and TransH-
RS in Section 3. We detail the experimental studies on our
models in Section 4, and finally give a conclusion in Section
5.

2 RELATED WORK

We introduce some typical models to learn knowledge embed-
dings in this section. All these methods embed entities into
a vector space and enforce the embedding compatible under
a relation r-dependent scoring. Different models differ in the
definition of scoring functions 𝑓𝑟(ℎ, 𝑡) between ℎ and 𝑡, but
they have the same margin-based ranking loss framework.

2.1 Translation based Models

TransE [7] encodes entities and relations in the same space
𝑅𝑘, and regards the relation r as translation from h to t

for a golden triplet (ℎ, 𝑟, 𝑡). The score function of TransE,
𝑓𝑟(ℎ, 𝑡) = ‖h + r − t‖22, is low if it is a golden triplet, and
high otherwise. Such score is very efficient to 1-to-1 relation,
but it has issues for N-to-1, 1-to-N and N-to-N relations. For
example, by a 1-to-N relation, a head will only be trans-
lated to the same tail, that is, if r is a 1-to-N relation for
{(ℎ, 𝑟, 𝑡𝑖)}𝑖=1,2,...,𝑁 , then 𝑡1 = 𝑡2 = . . . = 𝑡𝑁 , which does not
comport with the facts.

TransH [33] introduces a mechanism of projecting entities
into relation-specific hyperplane that enables different roles
of an entity in different relations, to overcome the issue of
TransE in modeling 1-to-N, N-to-1 and N-to-N relations.
For a triplet (ℎ, 𝑟, 𝑡), the projected entities h⊥ and t⊥ are
connected by a translation vector with low error if (ℎ, 𝑟, 𝑡)
holds. The score function of TransH is defined as 𝑓𝑟(ℎ, 𝑡) =
‖h⊥ + r− t⊥‖22, where h⊥ = h−w𝑇

𝑟 hw𝑟, t⊥ = t−w𝑇
𝑟 tw𝑟,

and h,h⊥, t, t⊥, r,w𝑟 ∈ 𝑅𝑘. w𝑟 restricted with ‖w𝑟‖ = 1
is the normal vector of the relation hyperplane. Although
TransH extends modeling flexibility by employing relation
hyperplanes, but similar to TransE it still assumes entities
and relations within the same space.

TransR/CTransR [18] considers relations and entities
as completely different objects in distinct semantic space,
and its score function is 𝑓𝑟(ℎ, 𝑡) = ‖h𝑟 + r − t𝑟‖22, where
h𝑟 = hM𝑟, t𝑟 = tM𝑟, h and t are in the entity space 𝑅𝑘,
h𝑟, t𝑟, r are in r-relation subspace 𝑅𝑑, and M𝑟 ∈ 𝑅𝑑×𝑘 is
the mapping matrix between the two spaces.

TransD [15] considers the multiple types of entities and
relations simultaneously, and replaces transfer matrix by the
product of two projection vectors of an entity-relation pair.
The score function of TransD is 𝑓𝑟(ℎ, 𝑡) = ‖h⊥ + r − t⊥‖22
where h⊥ = M𝑟ℎh, t⊥ = M𝑟𝑡t, M𝑟ℎ = r𝑝h

𝑇
𝑝 +I𝑚×𝑛, M𝑟𝑡 =

r𝑝t
𝑇
𝑝 ++I𝑚×𝑛.
TranSparse [16] adopts sparse matrices to model different

types of relations, which considers the heterogeneity and the
imbalance issues of knowledge graphs.

2.2 Other Models

Unstructured Model (UM) [5, 6] is a simplified case of
TransE [7], which sets all translations r=0, i.e., the scoring
function is 𝑓𝑟(ℎ, 𝑡) = ‖h−t‖22. Obviously it cannot distinguish
different relations.

Structured Embedding (SE) [4] introduces two relation-
specific weight matrices for head and tail entities, i.e., M𝑟ℎ

and M𝑟𝑡. L1 distance between two projected vectors is de-
fined as the score function, 𝑓𝑟(ℎ, 𝑡) = ‖M𝑟ℎh−M𝑟𝑡t‖22. This
model is weak in capturing correlations between entities and
relations as it uses two separate matrices.

Single Layer Model (SLM) [28] introduces nonlinear
transformations by neural networks. It concatenates h and t
as an input layer to a non-linear hidden layer then the linear
output layer gives the resulting score: 𝑓𝑟(ℎ, 𝑡) = u𝑇

𝑟 𝑔(M𝑟ℎh+
M𝑟𝑡t+ b𝑟), where M𝑟ℎ and M𝑟𝑡 are weight matrices, and
𝑔(.) is the tanh operation. SLM is a special case of NTN
when the tensor in NTN is set to 0.



Semantic Matching Energy (SME) [5, 6] aims to
capture correlations between entities and relations via mul-
tiple matrix products and Hadamard product. SME con-
siders two definitions of semantic matching energy func-
tions for optimization, including the linear form 𝑓𝑟(ℎ, 𝑡) =
(M1h+M2r+b1)

𝑇 (M3h+M4r+b2) and the bilinear form
𝑓𝑟(ℎ, 𝑡) = (M1h ⊗ M2r + b1)

𝑇 (M3h ⊗ M4r + b2). SME
model shares the same parameters for all the relations, where
M1, M2, M3 and M4 are weight matrices, b1 and b2 are
bias vectors, ⊗ is the Hadamard product.

Latent Factor Model (LFM) [14, 29] considers second-
order correlations between entity embeddings using a qua-
dratic form, and defines a bilinear score function 𝑓𝑟(ℎ, 𝑡) =
h𝑇M𝑟t.

NTN Model (NTN) [28] extends the Single Layer Mod-
el by considering the second-order correlations into nonlin-
ear transformation (neural networks). The score function is
𝑓𝑟(ℎ, 𝑡) = u𝑇

𝑟 𝑔(h
𝑇M𝑟t + M𝑟ℎh + M𝑟𝑡t + b𝑟), where u𝑟is

a relation-specific linear layer, 𝑔(·) is the tanh operation,
M𝑟 ∈ 𝑅𝑑×𝑑×𝑘is a 3-way tensor, and M𝑟ℎ,M𝑟𝑡 ∈ 𝑅𝑘×𝑑 are
weight matrices. However, the model complexity is much
higher, making it difficult to handle large scale graphs.

3 OUR MODELS

Among the translation-based models mentioned above, TransE
and TransH as basic models have low time complexities [15]
and efficient predictive performance [7, 33]. In this paper, we
present to extend TransE and TransH by combining limit-
based scoring loss with margin-based ranking loss, separately
to TransE-RS and TransH-RS. In this section, we firstly in-
troduce the margin-based ranking loss and analyze its issues
for learning knowledge embeddings.

3.1 Margin-based Ranking Loss

In translation-based models, to learn the entities embeddings
and relations for fitting translation rules, a margin-based
ranking criterion over the training set is defined [7, 15, 16,
18, 33]:

𝐿𝑅 =
∑︁

(ℎ,𝑟,𝑡)∈Δ

∑︁
(ℎ′,𝑟,𝑡′)∈Δ′

[𝛾1 + 𝑓𝑟(ℎ, 𝑡)− 𝑓𝑟(ℎ
′, 𝑡′))]+ (1)

where [𝑥]+ = 𝑚𝑎𝑥(0, 𝑥) aims to get the maximum between 0
and 𝑥. ∆ is the set of positive triplets, and ∆′ = {(ℎ′, 𝑟, 𝑡)|ℎ′ ∈
𝐸} ∪ {(ℎ, 𝑟, 𝑡′)|𝑡′ ∈ 𝐸} denotes the set of corrupted triplets,
which is composed of training triplets with either the head or
tail replaced by a random entity. 𝛾1 is the margin separating
positive and negative triplets.

The margin-based ranking loss function aims to make the
score 𝑓𝑟(ℎ

′, 𝑡′) of corrupted triplet higher by at least 𝛾1 than
𝑓𝑟(ℎ, 𝑡) of positive triplet. The parameters of the loss function
will be updated when the loss is more than zero, otherwise
not. For each training triplet (ℎ, 𝑟, 𝑡) the loss function is try
to realize

𝑓𝑟(ℎ
′, 𝑡′)− 𝑓𝑟(ℎ, 𝑡) ≥ 𝛾1 (2)

However, we note that such loss function maybe not ensure
𝑓𝑟(ℎ, 𝑡) to be low enough to represent the transaction between

ℎ and 𝑡. Factually from Eq.(2) it cannot be proved 𝑓𝑟(ℎ, 𝑡) < 𝜀
(𝜀 > 0, 𝜀 is an arbitrarily small positive real number), i.e.
h+ r ≈ t.

For example, under margin 𝛾1 = 1 a pair of scoring of
positive and negative triplets {𝑓𝑟(ℎ′, 𝑡′), 𝑓𝑟(ℎ, 𝑡)}, can be
{𝑓𝑟(ℎ′, 𝑡′) = 1.1, 𝑓𝑟(ℎ, 𝑡) = 0.1}, {𝑓𝑟(ℎ′, 𝑡′) = 5.1, 𝑓𝑟(ℎ, 𝑡) =
4.1}, and {𝑓𝑟(ℎ′, 𝑡′) = 30.1, 𝑓𝑟(ℎ, 𝑡) = 29.1}. These pairs
have the same zero loss, but in the last example the score
of positive triplet (equal to 29.1) is much higher. Obviously
a training triplet (ℎ, 𝑟, 𝑡) cannot reach the golden condition
h+ r ≈ t by such high scoring of 𝑓𝑟(ℎ, 𝑡).

To overcome the issue of margin-based loss function for
translation-based models, in the next section we present to
supplement a scoring loss on the models to limit 𝑓𝑟(ℎ, 𝑡) of
positive triplets.

3.2 Limit-based Scoring Loss

In order to effectively make the score of positive triplets
within a low value limit, we propose to set the upper limit
of the scoring for the correct triplet (ℎ, 𝑟, 𝑡), by defining a
limit-based scoring loss function:

𝐿𝑆 =
∑︁

(ℎ,𝑟,𝑡)∈Δ

[𝑓𝑟(ℎ, 𝑡)− 𝛾2]+ (3)

The parameters of the scoring loss will be updated when
the loss is more than zero, otherwise not. By such scoring
loss function, 𝑓𝑟(ℎ, 𝑡) favors lower score than 𝛾2 for a correct
triplet (ℎ, 𝑟, 𝑡), i.e.

𝑓𝑟(ℎ, 𝑡) ≤ 𝛾2 (4)

3.3 TransE-RS and TransH-RS

This paper presents a new loss function framework, denoted
as 𝐿𝑅𝑆 loss, which combines the limit-based scoring loss with
the margin-based ranking loss as

𝐿𝑅𝑆 = 𝐿𝑅 + 𝜆𝐿𝑆 , (𝜆 > 0) (5)

for our extended translation based models, TransE-RS and
TransH-RS.

TransE-RS and TransH-RS separately have the same defi-
nition of score function with TransE and TransH as follows:

(TransE-RS)

𝑓𝑟(ℎ, 𝑡) = ‖h+ r− t‖22
h, t, r,∈ 𝑅𝑘

(6)

(TransH-RS)

𝑓𝑟(ℎ, 𝑡) = ‖h⊥ + r− t⊥‖22
h⊥ = h−w𝑇

𝑟 hw𝑟

t⊥ = t−w𝑇
𝑟 tw𝑟

h,h⊥, t, t⊥, r,w𝑟 ∈ 𝑅𝑘

(7)

Optimization: The presented 𝐿𝑅𝑆 loss function Eq.(5)
for TransE-RS and TransH-RS is rewritten as follows in
detail:



Model #Parameters #Operations(Time complexity)

Unstructured(Bordes et al. 2012 [5]) 𝑂(𝑁𝑒𝑚) 𝑂(𝑁𝑡)
SE (Borders et al. 2011 [4]) 𝑂(𝑁𝑒𝑚+ 2𝑁𝑟𝑛2)(𝑚 = 𝑛) 𝑂(2𝑚2𝑁𝑡)

SME (linear)(Borders et al. 2012 [5]) 𝑂(𝑁𝑒𝑚+𝑁𝑟𝑛+ 4𝑚𝑘 + 4𝑘)(𝑚 = 𝑛) 𝑂(4𝑚𝑘𝑁𝑡)

SME(bilinear)(Borders et al. 2012 [5]) 𝑂(𝑁𝑒𝑚+𝑁𝑟𝑛+ 4𝑚𝑘𝑠+ 4𝑘)(𝑚 = 𝑛) 𝑂(4𝑚𝑘𝑠𝑁𝑡)
LMF (Jenatton et al. 2012 [14]) 𝑂(𝑁𝑒𝑚+𝑁𝑟𝑛2)(𝑚 = 𝑛) 𝑂((𝑚2 +𝑚)𝑁𝑡)
SLM (Socher et al. 2013 [28]) 𝑂(𝑁𝑒𝑚+𝑁𝑟(2𝑘 + 2𝑛𝑘))(𝑚 = 𝑛) 𝑂((2𝑚𝑘 + 𝑘)𝑁𝑡)
NTN (Socher et al. 2013 [28]) 𝑂(𝑁𝑒𝑚+𝑁𝑟(𝑛2𝑠+ 2𝑛𝑠+ 2𝑠))(𝑚 = 𝑛) 𝑂(((𝑚2 +𝑚)𝑠+ 2𝑚𝑘 + 𝑘)𝑁𝑡)

TransE (Borders et al. 2013 [7]) 𝑂(𝑁𝑒𝑚+𝑁𝑟𝑛)(𝑚 = 𝑛) 𝑂(𝑁𝑡)
TransH (Wang et al. 2014 [33]) 𝑂(𝑁𝑒𝑚+ 2𝑁𝑟𝑛)(𝑚 = 𝑛) 𝑂(2𝑚𝑁𝑡)
TransR (Lin et al. 2015 [18]) 𝑂(𝑁𝑒𝑚+𝑁𝑟(𝑚+ 1)𝑛) 𝑂(2𝑚𝑛𝑁𝑡)

CTransR (Lin et al. 2015 [18]) 𝑂(𝑁𝑒𝑚+𝑁𝑟(𝑚+ 𝑑)𝑛) 𝑂(2𝑚𝑛𝑁𝑡)
TransD (Ji et al. 2015 [15]) 𝑂(2𝑁𝑒𝑚+ 2𝑁𝑟𝑛) 𝑂(2𝑛𝑁𝑡)

TransE-RS (this paper) 𝑂(𝑁𝑒𝑚+𝑁𝑟𝑛)(𝑚 = 𝑛) 𝑂(𝑁𝑡)
TransH-RS (this paper) 𝑂(𝑁𝑒𝑚+ 2𝑁𝑟𝑛)(𝑚 = 𝑛) 𝑂(2𝑚𝑁𝑡)

Table 1: Complexity (the number of parameters and the number of multiplication operations).

𝐿𝑅𝑆 =
∑︁

(ℎ,𝑟,𝑡)∈Δ

∑︁
(ℎ′,𝑟,𝑡′)∈Δ′

{[𝛾1 + 𝑓𝑟(ℎ, 𝑡)− 𝑓𝑟(ℎ
′, 𝑡′)]+

+ 𝜆[𝑓𝑟(ℎ, 𝑡)− 𝛾2]+}
(8)

The constraints of parameters for the former margin-based
ranking loss in respective translation-based models are still
preserved in the corresponding extended models. TransE-RS:
∀e in entity set, ‖e‖2 = 1; ∀r in relation set, ‖r‖2 = 1. TransH-
RS: ∀e in entity set, ‖e‖2 ≤ 1; ∀dr , |w𝑇

𝑟 d𝑟|/‖d𝑟‖2 ≤ 𝜖; ∀w𝑟

for a relation, ‖w𝑟‖2 = 1.
The optimization for minimizing the 𝐿𝑅𝑆 loss, with the

constraints mentioned above, is carried out gradient descent
over the possible entities, translation vectors and other pa-
rameters. When a golden triplet is visited, a negative triplet
is randomly constructed according to the reference [33]. Af-
ter a mini-batch, the gradient is computed and the model
parameters are updated.

For a mini-batch of training triplets {(ℎ𝑖, 𝑟𝑖, 𝑡𝑖)}𝑖=1∼𝑁𝐵 ,
we can generate a general training set {(ℎ𝑖, 𝑟𝑖, 𝑡𝑖), (ℎ𝑖

′, 𝑟𝑖, 𝑡𝑖
′)}

by adding corrupted triplets. The loss of the mini-batch is

𝐿𝑅𝑆 =
∑︁
𝑖

𝐿𝑅𝑆(𝑖) (9)

where

𝐿𝑅𝑆(𝑖) =𝐿𝑅(𝑖) + 𝜆𝐿𝑆(𝑖)

=[𝛾1 + 𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)− 𝑓𝑟𝑖(ℎ
′
𝑖, 𝑡

′
𝑖)]+

+ 𝜆[𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)− 𝛾2]+

(10)

The gradient of 𝐿𝑅𝑆 can be written as

∇𝐿𝑅𝑆 =
∑︁
𝑖

∇𝐿𝑅𝑆(𝑖) (11)

where

∇𝐿𝑅𝑆(𝑖) =∇𝐿𝑅(𝑖) + 𝜆∇𝐿𝑆(𝑖)

=∇[𝛾1 + 𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)− 𝑓𝑟𝑖(ℎ
′
𝑖, 𝑡

′
𝑖)]+

+ 𝜆∇[𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)− 𝛾2]+

(12)

For a pair of positive and negative triplets {(ℎ𝑖, 𝑟𝑖, 𝑡𝑖),
(ℎ𝑖

′, 𝑟𝑖, 𝑡𝑖
′)}, the 𝐿𝑅𝑆(𝑖) loss includes two parts, margin-based

ranking loss 𝐿𝑅(𝑖) and limit-based scoring loss 𝐿𝑆(𝑖). The
gradient of 𝐿𝑅(𝑖) is also from the two loss, and the several
cases of ∇𝐿𝑅𝑆(𝑖) are given in follows:

Case 1 {(𝛾1+𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−𝑓𝑟𝑖(ℎ
′
𝑖, 𝑡

′
𝑖) > 0)∧(𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−𝛾2 ≤

0)}:∇𝐿𝑅𝑆(𝑖) = ∇[𝛾1+𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−𝑓𝑟𝑖(ℎ
′
𝑖, 𝑡

′
𝑖)] = ∇𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−

∇𝑓𝑟𝑖(ℎ
′
𝑖, 𝑡

′
𝑖);

Case 2 { (𝛾1+𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−𝑓𝑟𝑖(ℎ
′
𝑖, 𝑡

′
𝑖) ≤ 0)∧(𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−𝛾2 >

0)}: ∇𝐿𝑅𝑆(𝑖) = 𝜆∇[𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)− 𝛾2] = 𝜆∇𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖);
Case 3 { (𝛾1+𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−𝑓𝑟𝑖(ℎ

′
𝑖, 𝑡

′
𝑖) > 0)∧(𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−𝛾2 >

0)}:∇𝐿𝑅𝑆(𝑖) = ∇[𝛾1+𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−𝑓𝑟𝑖(ℎ
′
𝑖, 𝑡

′
𝑖)]+𝜆∇[𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−

𝛾2] = (1 + 𝜆)∇𝑓𝑟𝑖(ℎ𝑖, 𝑡𝑖)−∇𝑓𝑟𝑖(ℎ
′
𝑖, 𝑡

′
𝑖);

Case 4 {𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}: ∇𝐿𝑅𝑆(𝑖) = 0.
Comparing to common 𝐿𝑅 loss, our 𝐿𝑅𝑆 loss not only

scores correct triplets lower by 𝛾1 than that corrupted triplets,
but also scores correct triplets lower than 𝛾2.

For TransE-RS and TransH-RS, all embeddings for entities
and relationships are first initialized following the random
procedure proposed in [7, 10, 33], not using the results of
TransE as [15, 18].

We also compare the parameter and operation complexities
with several translation-based models and other baseline
models reported by references [15, 16], shown in Table 1. 𝑁𝑒

and 𝑁𝑟 in this table are the number of entities and relations,
𝑁𝑡 represents the number of triplets in a knowledge graph,
𝑚 is the dimension of entity embedding spaces and 𝑛 is the
dimensions of relation embedding spaces. Same as TransE
and TransH, TransE-RS and TransH-RS separately have low
parameter complexities and time complexities.

4 EXPERIMENTS

We empirically study and evaluate our proposed models on
two tasks, link prediction [7] and triplet classification [28] on
subsection 4.1 and 4.2. The tasks are implemented on two
popular knowledge graphs, WordNet [21] and Freebase [2].
WordNet is a large lexical knowledge graph, in which a synset
as an entity expresses distinct concept and relationships
between synsets indicate their lexical relations. Freebase is
a large collaborative knowledge base consisting of a large
number of world facts. Table 3 lists statistics of subsets from



Dataset WN18 FB15k

Metric
Mean Hits@10 (%) Mean Hits@10(%)

raw filt raw filt raw filt raw filt

Unstructured(Bordes et al. 2012 [5]) 315 304 35.5 38.2 1074 979 4.5 6.3

RESCAL(Nickel, et al. 2011 [23]) 1,180 1,163 37.2 52.8 828 683 28.4 44.1

SE (Borders et al. 2011 [4]) 1,011 985 68.5 80.5 273 162 28.8 39.8
SME (linear)(Borders et al. 2012 [5]) 545 533 65.1 74.1 274 154 30.7 40.8

SME(bilinear)(Borders et al. 2012 [5]) 526 509 54.7 61.3 284 158 31.3 41.3

LMF (Jenatton et al. 2012 [14]) 469 456 71.4 81.6 283 164 26.0 33.1
TransE (Borders et al. 2013 [7]) 263 251 75.4 89.2 243 125 34.9 47.1

TransH (unif)(Wang et al. 2014 [33]) 318 303 75.4 86.7 211 84 42.5 58.5

TransH (bern)(Wang et al. 2014 [33]) 401 388 73.0 82.3 212 87 45.7 64.4
TransR (unif)(Lin et al. 2015 [18]) 232 219 78.3 91.7 226 78 43.8 65.5

TransR (bern)(Lin et al. 2015 [18]) 238 225 79.8 92.0 198 77 48.2 68.7
TransD (unif)(Ji et al. 2015 [15]) 242 229 79.2 92.5 211 67 49.4 74.2

TransD (bern)(Ji et al. 2015 [15]) 224 212 79.6 92.2 194 91 53.4 77.3

TransE-RS(unif) 362 348 80.3 93.7 161 62 53.1 72.3

TransE-RS(bern) 385 371 80.4 93.7 161 63 53.2 72.1
TransH-RS(unif) 401 389 81.2 94.7 163 64 53.4 72.6
TransH-RS(bern) 371 357 80.3 94.5 178 77 53.6 75.0

Table 2: Evaluation results on link prediction.

WordNet and Freebase in our experiments. WN11 [28] and
WN18 [6] are two subsets of WordNet; and FB15k [6] and
FB13 [28] are two subsets of Freebase.

Dataset #Rel #Ent #Train #Valid #Test

WN11 11 38,696 112,581 2,609 10,544
WN18 18 40,943 141,442 5,000 5,000

FB13 13 75,043 316,232 5908 23,733
FB15k 1,345 14,951 483,142 50,000 59,071

Table 3: Datasets used in experiments.

We analyze the scoring distribution of positive and neg-
ative triplets by TransE, TransH and our extended models
on Fb15K in subsection 4.3, and also discuss the effect of
parameters 𝛾1, 𝛾2 and 𝜆 on our models in subsection 4.4.

4.1 Link prediction

Link prediction [5, 6] is to predict the missing h or t for a
relation fact triple (ℎ, 𝑟, 𝑡). In the experiments two datasets
WN18 and FB15k (see Table 2) are used. For each testing
triplet (ℎ, 𝑟, 𝑡), we replace h or t entity by every entity in
the knowledge graph and rank all the entities in descending
order according to the scores calculated by score function.
The correct entities for missing prediction should lead to
lower 𝑓𝑟(ℎ, 𝑡) scores and meanwhile hit former ranks. The
settings “raw” and “filt” distinguish whether or not to con-
sider the impact of a corrupted triplet existing in correct KG.
Following common translation based models, two metrics are
reported: the averaged rank of correct entities (denoted as
Mean), and the proportion of top-10 rank for correct entities
(denoted as Hits@10). The expected results for a good model
should be that “Mean” is lower and “Hits@10” is higher.
For constructing the corrupted triples, we use “unif” to de-
note the traditional way of replacing head or tail with equal

probability, and follow [33] to use “bern” to denote reducing
false negative labels by replacing head or tail with different
probabilities. For the compared models, as all the data sets
are the same, we will refer to experimental results of several
baselines from [7, 15, 18, 33].

In the experiments of our two proposal models, we select
learning rate 𝛼 for GD from {0.001, 0.005, 0.01}, parameter
𝜆 from {0.5, 1, 2}, ranking margin 𝛾1 from {0.25, 1, 2, 6},
upper limit 𝛾2 of scoring for positive triplet from {0.5𝛾1, 𝛾1,
2𝛾1, 3𝛾1, 4𝛾1}, the embedding dimension 𝑘 from {50, 100},
the batch size B from {75, 120, 960, 1200, 4800}, 𝐿1 distances
for loss functions, and the weight 𝐶 from {0.0625, 0.25, 1.0}
for TransH-RS. The optimal parameters are determined by
the validation set. We traverse all the training triplets for
1000 rounds.

WN18 𝛼 𝜆 𝛾1 𝛾2 𝑘 𝐵

TransE-RS(“unif” & “bern”) 0.001 0.5 2 6 100 1200
TransH-RS(“unif” & “bern”) 0.001 1 2 6 100 1200

FB15K 𝛼 𝜆 𝛾1 𝛾2 𝑘 𝐵

TransE-RS(“unif” & “bern”) 0.001 1 2 6 100 960

TransH-RS(“unif”) 0.001 1 2 6 100 960

TransH-RS(“bern”) 0.001 0.5 2 8 100 960

Table 4: Experimental Parameters for Link Predic-
tion.

Evaluation results on both WN18 and FB15K are shown
in Table 2. and the optimal configurations of TransE-RS and
TransH-RS for link prediction are given in Table 4, and the
weight 𝐶 for TransH-RS are all set to 0.0625.

From Table 2, we can see that: (1) TransE-RS and TransH-
RS outperform non-Translation models (Unstructured, SE,
SME, and LMF), TransE, TransH and TransR, and also can
be comparable to TransD except results of WN18 Mean



Predicting head(Hits@10) Predicting tail(Hits@10)

Relation Category 1-to-1 1-to-n n-to-1 n-to-n 1-to-1 1-to-n n-to-1 n-to-n

Unstructured(Bordes et al. 2012 [5]) 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
SE (Borders et al. 2011 [4]) 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME(linear)(Borders et al. 2012 [5]) 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3

SME(bilinear)(Borders et al. 2012 [5]) 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8
TransE(Borders et al. 2013 [7]) 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0

TransH (unif)(Wang et al. 2014 [33]) 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8

TransH (bern)(Wang et al. 2014 [33]) 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR (unif)(Lin et al. 2015 [18]) 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1

TransR (bern)(Lin et al. 2015 [18]) 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

TransD (unif)(Ji et al. 2015 [15]) 80.7 85.8 47.1 75.6 80.0 54.5 80.7 77.9
TransD (bern)(Ji et al. 2015 [15]) 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

TransE-RS(unif) 87.2 96.2 35.9 71.8 87.0 45.0 95.5 75.4

TransE-RS(bern) 87.4 96.3 35.3 71.7 86.5 44.2 95.4 75.2
TransH-RS(unif) 87.6 95.9 35.6 72.5 86.3 44.9 95.5 75.8
TransH-RS(bern) 85.6 95.5 37.4 75.5 85.7 47.4 94.9 78.7

Table 5: Evaluation results on FB15K by mapping properties of relations.(%)

metric. (2) TransE-RS and TransH-RS perform better than
other models on WN18 Hit@10 metric, where our “raw”
are higher than 80.3% and “filt” are higher than 93.7%. (3)
TransE-RS and TransH-RS achieve great improvements on
FB15k, the results of Hit@10(“raw”) are all more than 53.1%
and that of Hit@10(“filt”) are all more than 72.1%. (4) We
note that TransE-RS and TransH-RS have lower parameter
complexities (see Table 1) than TransR and TransD.

For the comparison of Hits@10 of different kinds of relation-
s, Table 5 shows the detailed results by mapping properties
of relations following the same rules in [7] on FB15k. From
Table 5, we can see that TransE-RS and TransH-RS obvi-
ously outperform TransE, TransH and TransR, and can be
comparable to TransD. Especially TransE-RS and TransH-
RS achieve higher accuracies on predicting head (including
1-to-1 and 1-to-n relations) and predicting tail (including
1-to-1 and n-to-1 relations). The accuracies of predicting
head 1-to-1 are more than 85.6%, and that of 1-to-n are
more than 95.5% . The accuracies of predicting tail 1-to-1 are
more than 85.7%, and that of n-to-1 are more than 94.9%.
Generally our proposed models obtain the highest accuracies
among the compared methods on following items: predicting
head (1-to-1 relations) “unif” is 87.6% and “bern” is 87.4%,
predicting head (1-to-n relations) “unif” is 96.2% and “bern”
is 96.3%, predicting tail (n-to-1 relations) “unif” is 87.0%
and “bern” is 86.5%, and predicting tail (n-to-1 relations)
“unif” is 95.5% and “bern” is 94.9%.

4.2 Triple Classification

This task aims to judge whether a given triple (h, r, t) is
correct or not, i.e., binary classification on a triplet. It is
used in [28] to evaluate NTN model on two datasets (WN11
and FB13) with small number of relations, and has been
explored in [33] on FB15k containing much more relations.
Following [33] , we also use three data sets, WN11, FB13 and
FB15K (see Table 2), for the test of our models.

In the test phase, we need negative triples for the bina-
ry classification evaluation. The data sets WN11 and FB13
released by NTN [28] already have negative triples. For F-
B15k, we construct the negative triplets following the same
procedure as in [28]. The decision rule for classification is
that, a triplet (h,r,t) is predicted positive if the score 𝑓𝑟 is
below a relation-specific threshold, otherwise negative. The
relation-specific threshold is optimized by maximizing clas-
sification accuracies on the validation set. For WN11 and
FB13, we compare our models with baseline methods re-
ported in [15, 18, 33] who used the same data sets. For
FB15k, since our strategy for constructing negative triplets is
same to [15, 18, 28], we did not rerun the compared baseline
methods, and adopt their results reported in [15, 18]. For
TransE-RS and TransH-RS, the initial entities are randomly
given following [7, 10, 33].

For our proposal models we select learning rate 𝛼 for
GD from {0.001, 0.005, 0.01}, parameter 𝜆 from {0.5, 1, 2},
ranking margin 𝛾1 from {0.25, 1, 2, 6, 7}, upper limit 𝛾2 of
scoring for positive triplet from {0.5𝛾1, 0.7𝛾1, 𝛾1, 2𝛾1, 3𝛾1,
4𝛾1}, the embedding dimension 𝑘 from {50, 100}, the batch
size B from {120, 480, 960, 1200, 4800}, 𝐿1 distances for
loss functions, and the weight 𝐶 from {0.0625, 0.25, 1.0} for
TransH-RS. The optimal parameters are determined by the
validation set. We traverse all the training triplets for only
500 rounds, as there are no significant improvements with
much more rounds.

Evaluation results of triple classification are shown in Ta-
ble 6, and the optimal configurations of TransE-RS and
TransH-RS for triplet classification are given in Table 7, and
the weight 𝐶 for TransH-RS are all set to 0.0625. From Ta-
ble 6, TransE-RS and TransH-RS significantly outperform
non-Translation models, TransE and TransH, and can be
comparable to TransR and TransD for triplets classification.
On WN11 our models with all possible settings can reach
more than 85.2%, which improve TransE and TransH more



Data Sets WN11 FB13 FB15K

SE 53.0 75.2 -

SME(bilinear) 70.0 63.7 -

SLM 69.9 85.3 -
LFM 73.8 84.3 -

NTN 70.4 87.1 68.2

TransE (unif) 75.9 70.9 77.3
TransE (bern) 75.9 81.5 79.8

TransH (unif) 77.7 76.5 74.2

TransH (bern) 78.8 83.3 79.9
TransR (unif) 85.5 74.7 81.1

TransR (bern) 85.9 82.5 82.1
TransD (unif) 85.6 85.9 86.4
TransD (bern) 86.4 89.1 88.0

TransE-RS(unif) 85.2 82.8 82.0

TransE-RS(bern) 85.3 83.0 81.9

TransH-RS(unif) 86.3 82.1 83.0
TransH-RS(bern) 86.4 81.6 83.2

Table 6: Experimental results on Triplets Classifica-
tion Accuracies(%).

WN11 𝛼 𝜆 𝛾1 𝛾2 𝑘 𝐵

TransE-RS(“unif” & “bern”) 0.01 1 7 4.9 100 120
TransH-RS(“unif” & “bern”) 0.01 1 10 7 100 120

FB13 𝛼 𝜆 𝛾1 𝛾2 𝑘 𝐵

TransE-RS(“unif” & “bern”) 0.001 0.25 2 8 100 1200
TransH-RS(“unif” & “bern”) 0.001 1.5 2 8 100 1200

FB15K 𝛼 𝜆 𝛾1 𝛾2 𝑘 𝐵

TransE-RS(“unif” & “bern”) 0.001 1 2 6 100 960

TransH-RS(“unif”) 0.001 1 2 6 100 960
TransH-RS(“bern”) 0.001 0.5 2 8 100 960

Table 7: Experimental Parameters for Link Predic-
tion.

than 6.4%. On FB13 and FB15K, our models also have signifi-
cant improvements compared to TransE, TransH and TransR,
but cannot perform better than TransD in our selected op-
timal parameters range. Moreover, we should note that (1)
TransE-RS and TransH-RS have same parameter and opera-
tion complexities as TransE and TransH, which is lower than
TransR and TransD. (2) There are differences in initialing
entities embeddings between our models and TransR/TransD.
Our models randomly initial the entities, not use the learned
embeddings by TransE as TransR and TransD. It means that
our models have much better ability to overcome the problem
of overfitting.

We also compared the classification accuracies of each re-
lation by TransE, TransH, TransE-RS and TransH-RS on
WN11. In this experiment, we rerun the TransE and TransH
with the parameters reported in [33], obtain slightly differ-
ent accuracies 76.5%(TransE) and 71.9%(TransH) with the
reported results(in Table 5), and we ignore the differences
derived from randomly experiments. The accuracies of eleven
relations on WN11 are given separately in Figure 1.

Figure 1: Classification accuracies of different rela-
tions on WN11

From results of Figure 1, TransE-RS and TransH-RS sig-
nificantly improve TransE and TransH in each relation clas-
sification. TransH-RS is slightly better than TransE-RS.

4.3 Distributions of Triplets’ Scores

We discuss distributions of positive and negative triplets’ s-
cores by TransE, TransH, TransE-RS and TransH-RS, aiming
to analyze the difference between 𝐿𝑅 Loss and our 𝐿𝑅𝑆 Loss.
On FB15K data set, we train knowledge embeddings with
“unif” on training set, and use validation set to test the scoring
distributions. There are 50000 correct triplets and correspond-
ing 50000 corrupted triplets sampled by the procedure same
to section 4.2 in [28]. For each pair of positive and negative
triplets in validation set, we calculate the score 𝑓𝑟(ℎ, 𝑡) of
positive triplet, the score 𝑓𝑟(ℎ

′, 𝑡′) of negative triplet and
the margin-score 𝑓𝑟(ℎ

′, 𝑡′) − 𝑓𝑟(ℎ, 𝑡) of the pair, and then
give the distributions of three kinds of scores separately. In
this experiment, during scoring range [−6, 30], the scoring
interval is set to 2, and for a score s, we count the proportion
of triplets’ scores in (𝑠− 1, 𝑠+ 1] as the probability of score
s. For example, for the distribution of positive triplets’ score
𝑓𝑟(ℎ, 𝑡), the number of positive triplets during (s-1,s+1] is
𝑛𝑠, the 𝑛𝑠/50000 is as the proportion of the score 𝑠 (where
𝑠 = −6,−4,−2, ., 30) on 𝑓𝑟(ℎ, 𝑡) distribution.

The optimization parameters of TransE and TransH are
same as reference [33], and the parameters of TransE-RS
and TransH-RS on FB15K have been give in subsection
4.2. Table 8 only lists the parameters 𝛾1 for margin-scoring
𝑓𝑟(ℎ

′, 𝑡′) − 𝑓𝑟(ℎ, 𝑡) and 𝛾2 for scoring 𝑓𝑟(ℎ, 𝑡) of positive
triplets in these models.

# Param TransE TransH TransE-RS TransH-RS

𝛾1 1 0.25 2 2
𝛾2 - - 6 6

Table 8: Experimental Parameters.



Figure 2: Distribution of triplets on different scores(FB15K)

Figure 2 (a), (b), (c) and (d) show separately the result-
s of TransE, TransH, TransE-RS and TransH-RS on the
distributions of three kinds of scores. In Figure 2 (c) and
(d), TransE-RS and TransH-RS obviously have concentrated
distributions on the scores of positive triplets and negative
triplets. We give the analysis as follows: (1) “𝛾2 = 6” used
in 𝐿𝑆 loss by our models means that the scoring 𝑓𝑟(ℎ, 𝑡) of
positive triplets are expected lower than 6, thus there is high
proportion score distribution of positive triplets smaller than
6 for TransE-RS and TransH-RS. About 80 percent of the
positive triplets are scored lower than 6. (2) For TransE-RS
and TransH-RS, the negative triplets also have high propor-
tion distribution larger than the score 8, which is derived
from the combination of 𝐿𝑅 loss and 𝐿𝑆 loss. The scoring of a
positive triplet has high probability lower than 6, meanwhile
the margin to the corresponding negative triplet is more than
2, so the negative triplet will have high probability larger
than 8(6+2=8). See Figure 2 (c) and (d), about 46 percent of
the negative triplets are scored larger than 8. (3) Moreover,
the marginal scoring also have high proportion larger than
the score 2, as the “𝛾1 = 2” in 𝐿𝑅 loss.

In Figure 2 (a) and (b), TransE only has a concentrated
distribution for margin-score 𝑓𝑟(ℎ

′, 𝑡′)− 𝑓𝑟(ℎ, 𝑡), due to the
margin-based ranking Loss 𝐿𝑅. But the other two distribu-
tions of scores 𝑓𝑟(ℎ, 𝑡) and 𝑓𝑟(ℎ

′, 𝑡′) are not concentrated and
rather scattered in scoring range from 6 to 30. Compared
to TransE, TransH has the concentrated scorings separately
on the 𝑓𝑟(ℎ, 𝑡) and 𝑓𝑟(ℎ

′, 𝑡′) in Figure 2 (b). Compared to
TransE and TransH, TransE-RS and TransH-RS have more
centralized proportion distribution on the scoring of positive
triplets, meanwhile maintain the margin between the scores
of positive and negative triplets.

We further analyze the example of TransE and TransE-
RS by another distribution map in Figure 3. We give s-

Figure 3: {𝑓(ℎ, 𝑟, 𝑡), (𝑓(ℎ′, 𝑟, 𝑡′)− 𝑓(ℎ, 𝑟, 𝑡))} distribution
of triplets (FB15K)

core 𝑓𝑟(ℎ, 𝑡) and margin-score 𝑓𝑟(ℎ
′, 𝑡′)− 𝑓𝑟(ℎ, 𝑡) from a pair

of positive and negative triplets, and then plot 2D point
(𝑓𝑟(ℎ, 𝑡), 𝑓𝑟(ℎ

′, 𝑡′)− 𝑓𝑟(ℎ, 𝑡)). For TransE, most points (about
percent 70) 𝑓𝑟(ℎ

′, 𝑡′) − 𝑓𝑟(ℎ, 𝑡) > 1, due to the parameter
“𝛾1 = 1” in 𝐿𝑅 loss. For TransE-RS, there is not only “𝛾1 = 2”
in 𝐿𝑅 loss, but also “𝛾2 = 6” in 𝐿𝑆 loss, thus percent 43 of
points in the area of (𝑓𝑟(ℎ

′, 𝑡′)− 𝑓𝑟(ℎ, 𝑡) > 2)∧ (𝑓𝑟(ℎ, 𝑡) < 6),



and total percent of 89 points in the area of 𝑓𝑟(ℎ, 𝑡) < 6. Com-
pared with TransE, TransE-RS favors more concentrated and
lower scores for positive triplets.

4.4 Discussion of Parameters

4.4.1 Discussion on 𝛾1 and 𝛾2. Different from common
translation based models that only use margin-based ranking
loss, our proposed models in addition consider another limit-
based scoring loss. For the loss functions, 𝛾1 limits the score
margin between positive and negative triplets, and 𝛾2 sets the
upper limit of scoring for positive triplets. We also try to find
the correlation of 𝛾1 and 𝛾2 from the results of link prediction
and triplet classification. We find that 𝛾2 = 3𝛾1 or 𝛾2 = 4𝛾1
is better for link prediction, but for triplet classification there
are not obvious characteristics on 𝛾1 and 𝛾2.

Figure 4: WN18 Hit10 Metric (”filt”) under different
ratio of 𝛾2 to 𝛾1 with fixed 𝛾1.

In Figure 4, we give an example on WN18 Hit@10 “filt”
with different settings of 𝛾1 and 𝛾2. For TransE-RS and
TransH-RS, 𝛾1 = 2, 𝛾2 = {0.25𝛾1, 0.5𝛾1, 0.75𝛾1, 𝛾1, 2𝛾1, 3𝛾1,
4𝛾1, 5𝛾1, 6𝛾1}, and other optimal configurations are 𝑘 = 100,
𝐵 = 1200, 𝛼 = 0.001, and 𝜆 = 1.

A lower 𝛾2 is expected to ensure the golden condition
h+ r ≈ t for positive triplets, but we know that in complex
knowledge graphs there exist many “1-to-n”, “n-to-1” and “n-
to-n” relations, that is, an entity may be correlative to many
relations. It means that an entity needs to satisfy many golden
conditions at the same time, if the scoring of the entity’s
positive triplet is limited to low value for one relation, it
maybe lead to higher scoring for other relations. An expected
𝛾2 should make entities suit the evaluations from all the
relations. Upon seeing Figure 4 we find that too lower 𝛾2 is
not good for representation of knowledge embeddings, and
also when 𝛾2 = 3𝛾1 all the methods can reach a stable good
results on Hit@10 (“filt”) metric. Moreover 𝛾1 maintains the
discrimination between positive and negative triplets, which
also give the rules on learning knowledge embeddings. Thus
𝛾1 and 𝛾2 are two important factors for our proposed models.

4.4.2 Discussion on 𝜆. Parameter 𝜆 is used to combine
𝐿𝑆 loss with 𝐿𝑅 loss for our models, which is one of the

different parameters from the former models. To analyze
the influence of 𝜆 on our models, we test the two tasks
link prediction and triplet classification under different 𝜆 on
FB15K data set. We example “filt” and “bern” method in
this experiment, 𝜆 is from {0, 0.001, 0.1, 0.25, 0.5, 1, 2, 3, 4},
and the other fixed parameters are same to our models on
FB15K in subsection 4.1 and 4.2. We firstly learn models
with different 𝜆 on training and validation set, and separately
test the accuracies of link prediction and triplet classification
on test set.

Figure 5: Results with different 𝜆 on FB15K

Figure 5 (a) and (b) show the results of link prediction
(𝐻𝑖𝑡@10 metric) and triplet classification separately. From
the results of Figure 5, we can see that different 𝜆 lead to
various accuracies. For link prediction task, 𝜆 = 1 is best
for TransE-RS (72.1%) and 𝜆 = 0.5 is best for TransH-
RS (75.0%). For Triplet classification task, 𝜆 = 1 is best
for TransE-RS (81.9%) and 𝜆 = 0.5 is best for TransH-RS
(83.2%). From the general change of accuracies in Figure 5
(a) and (b), we find that the effect of 𝜆 on TransE-RS is
greater than that on TransH-RS. That is, TransE-RS is more
sensitive to parameter 𝜆 than TransH-RS. Thus TransH-RS
is more stable than TransE-RS under 𝜆 settings.

5 CONCLUSIONS

For knowledge graph embedding, we propose a new loss frame-
work which combines limit-based scoring loss and margin-
based ranking loss to provide lower scoring of a golden triplet.
By the new loss framework, we extend two basic translation-
based models TransE and TransH, to TransE-RS and TransH-
RS. Experimental results on triplet classification and link
prediction show that the proposal TransE-RS and TrasH-RS
significantly improve original translation-based models, and
are comparable to state-of-the-art methods, meanwhile main-
taining the low complexities of parameters. Our work can be
used as a reference for other translation-based models and
other knowledge graph embedding models.

6 ACKNOWLEDGMENTS

This work is supported by National Key R&D Program 2016
(No.2016YFB0801300), and the National Natural Science
Foundation of China (No.61202226), We thank all anonymous
reviewers for their constructive comments.



REFERENCES
[1] M. Ashburner, C. A. Ball, and J. A. et al. Blake. 2000. Geneon-

tology: Tool for the unification of biology. Nature genetics 25, 1
(2000), 25–29.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. 2008.
Freebase: a collaboratively created graph database for structuring
human knowledge. In In Proceedings of KDD. 1247–1250.

[3] A. Bordes, S. Chopra, and J. Weston. 2014b. Question answering
with subgraph embeddings. In In Proceedings of the Conference
on Empirical Methods in Natural Language Processing,EMNLP.
615–620.

[4] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. 2011. Learning
structured embeddings of knowledge bases. In In Proceedings of
AAAI. 301–306.

[5] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. 2012. Joint
learning of words and meaning representations for open-text
semantic parsing. In In Proceedings of AISTATS. 127–135.

[6] A. Bordes, X. Glorot, J. Weston, and Y. Bengio. 2014a. A semantic
matching energy function for learning with multirelational data.
Machine Learning 94, 2 (2014a), 233–259.

[7] A. Bordes, N. Usunier, and A. Garcia-Duran. 2013. Translating
Embeddings for Modeling Multi-relational Data. In In Proceed-
ings of NIPS. 2787–2795.

[8] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles,
Estevam R. Hruschka Jr., and Tom M. Mitchell. 2010. Toward
an Architecture for Never-Ending Language Learning. In Pro-
ceedings of the Twenty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15,
2010.

[9] H. Chen, M. Sun, C. Tu, Y. Lin, and Z. Liu. 2016. Neural
Sentiment Classification with User and Product Attention. In
Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2016, Austin, Texas,
USA, November 1-4, 2016. 1650–1659.

[10] X. Glorot and Y. Bengio. 2010. Understanding the difficulty of
training deep feedforward neural networks. In In Proceedings
of the International Conference on Artificial Intelligence and
Statistics (AISTATS). 249–253.

[11] S. Guo, Q. Wang, B. Wang, L. Wang, and L. Guo. 2015. Seman-
tically Smooth Knowledge Graph Embedding. In Proceedings of
the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Nat-
ural Language Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. 84–94.

[12] S He, K. Liu, G. Ji, and J. Zhao. 2015. Learning to represent
knowledge graphs with gaussian embedding. In In Proceedings
of the 24th ACM International on Conference on Information
and Knowledge Management.

[13] S. He, K. Liu, Y. Zhang, L. Xu, and J. Zhao. 2014. Question an-
swering over linked data using first-order logic. In In Proceedings
of the Conference on Empirical Methods in Natural Language
Processing,EMNLP. 1092–1103.

[14] R. Jenatton, N. L. Roux, A. Bordes, and G. R. Obozinski. 2012.
A latent factor model for highly multi-relational data. In In
Proceedings of NIPS. 3167–3175.

[15] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao. 2015. Knowledge graph
embedding via dynamic mapping matrix. In In Proceedings of
ACL. 687–696.

[16] G. Ji, K. Liu, S. He, and J. Zhao. 2016. Knowledge Graph Com-
pletion with Adaptive Sparse Transfer Matrix. In In Proceedings
of AAAI. 985–991.

[17] Ni Lao, Tom M. Mitchell, and William W. Cohen. 2011. Random
Walk Inference and Learning in A Large Scale Knowledge Base.
In Proceedings of the 2011 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2011, 27-31 July 2011,
John McIntyre Conference Centre, Edinburgh, UK, A meeting
of SIGDAT, a Special Interest Group of the ACL. 529–539.

[18] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. 2015. Learning entity
and relation embeddings for knowledge graph completion. In In
Proceedings of AAAI. 2181–2187.

[19] Y. Lin, S. Shen, Z. Liu, H. Luan, and M. Sun. 2016. Neural
Relation Extraction with Selective Attention over Instances. In
Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013. Distributed Representations of Words and
Phrases and their Compositionality. Advances in Neural Infor-
mation Processing Systems 26 (2013), 3111–3119.

[21] G. A. Miller. 1995. Wordnet: a lexical database for english.
Commun. ACM 38, 11 (1995), 39–40.

[22] Maximilian Nickel, Volker Tresp, and Hans Peter Kriegel. 2011.
A Three-Way Model for Collective Learning on Multi-Relational
Data. In International Conference on Machine Learning, ICML
2011, Bellevue, Washington, Usa, June 28 - July. 809–816.

[23] M. Nickel, V. Tresp, and H.-P. Kriegel. 2012. Factorizing yago:
scalable machine learning for linked data. In In Proceedings of
WWW. 271–280.

[24] Alberto Paccanaro and Geoffrey E Hinton. 2001. Learning Dis-
tributed Representations of Concepts Using Linear Relational
Embedding. IEEE Transactions on Knowledge and Data Engi-
neering 13 (2001).

[25] Hinrich Schuetze and Christian Scheible. 2013. Two SVDs produce
more focal deep learning representations. CoRR abs/1301.3627
(2013).

[26] W. Shen, J. Wang, P. Luo, and M. Wang. 2013. Linking named
entities in tweets with knowledge base via user interest modeling.
In In Proceedings of the 19th ACM SIGKDD. 68–76.

[27] Farzaneh Shoeleh, Mahshid Majd, Ali Hamzeh, and Sattar Hashe-
mi. 2015. Knowledge Representation in Learning Classifier Sys-
tems: A Review. CoRR abs/1506.04002 (2015).

[28] R. Socher, D. Chen, C. D. Manning, and A. Ng. 2013. Reasoning
with neural tensor networks for knowledge base completion. In
In Proceedings of NIPS. 926–934.

[29] I. Sutskever, J. B. Tenenbaum, and R. Salakhutdinov. 2009. Mod-
elling relational data using bayesian clustered tensor factorization.
In In Proceedings of NIPS. 1821–1828.

[30] Sean R. Szumlanski and Fernando Gomez. 2010. Automatically
acquiring a semantic network of related concepts. In Proceedings
of the 19th ACM Conference on Information and Knowledge
Management, CIKM 2010, Toronto, Ontario, Canada, October
26-30, 2010. 19–28.

[31] Luke Vilnis and Andrew Mccallum. 2014. Word Representations
via Gaussian Embedding. Computer Science (2014).

[32] William Yang Wang, Kathryn Mazaitis, Ni Lao, and William W.
Cohen. 2015. Efficient inference and learning in a large knowledge
base. Machine Learning (2015).

[33] Z. Wang, J. Zhang, J. Feng, and Z. Chen. 2014. Knowledge graph
embedding by translating on hyperplanes. In In Proceedings of
AAAI. 1112–1119.

[34] H. Xiao, M. Huang, and X. Zhu. 2016. From One Point to a Man-
ifold: Knowledge Graph Embedding for Precise Link Prediction.
In IJCAI 2016,. 1315–1321.

[35] H. Xiao, M. Huang, and X. Zhu. 2016. TransG: A Generative
Model for Knowledge Graph Embedding. In Proceedings of the
54th Annual Meeting of the Association for Computational
Linguistics, August 7-12, 2016, Berlin, Germany. 2316C–2325.

[36] M. Yahya, K. Berberich, S. Elbassuoni, and G. Weikum. 2013.
Robust question answering over the web of linked data. In In Pro-
ceedings of the 22nd ACM international conference on CIKM.
Association for Computational Linguistics, 1107–1116.

[37] Limin Yao, Sebastian Riedel, and Andrew Mccallum. 2012. Prob-
abilistic databases of universal schema. In Joint Workshop on
Automatic Knowledge Base Construction and Web-Scale Knowl-
edge Extraction. 116–121.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Translation based Models
	2.2 Other Models

	3 Our Models
	3.1 Margin-based Ranking Loss
	3.2 Limit-based Scoring Loss
	3.3 TransE-RS and TransH-RS

	4 Experiments
	4.1 Link prediction
	4.2 Triple Classification
	4.3 Distributions of Triplets' Scores
	4.4 Discussion of Parameters

	5 Conclusions
	6  Acknowledgments
	References

